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ABSTRACT: This study has led to two main conclusions.
First, fractional derivation can be used to calculate the av-
erage end-to-end distance of a polymeric chain as precisely
as other existing computational techniques. Second, knowl-
edge of the changes in the molecular characteristics of a
polymeric chain is needed for the correct calculation of the

indicated parameters. In other words, one should take into
consideration the dynamics when the structure of a macro-
molecular coil is varied. © 2004 Wiley Periodicals, Inc. J Appl
Polym Sci 91: 3765–3768, 2004
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INTRODUCTION

A macromolecular coil in a polymeric solution is a
fractal object, the structure (the distribution of its ele-
ments in space) of which can be described with the
help of the fractal (Hausdorff) dimension (Df).

1 This
allows the use of the mathematical theory of fractional
derivation2–4 for the description of the parameters of a
macromolecular coil. Within the framework of this
formalism, a capacity for the precise description of
nonlinear phenomena, such as spatial correlations,4

can be represented. In the past, fractional derivation
has also been successfully applied to the description of
the properties of polymers.5–8 In this article, this ap-
proach is used for the calculation of the average end-
to-end distance (�h�s

2�1/2) of a polymeric chain of poly-
carbonate (PC) in two different solvents.

THEORY

There are a number of methods used for the calcula-
tion of �h�s

2�1/2, which is an important parameter in the
theory of polymeric solutions.9 The following empiri-
cal relationships for PC in solutions of methylene chlo-
ride (MCh) and tetrahydrofuran (THF) can be ob-
tained:10

�h� s
2�1/2 � 0.66M�

0.58 for MCh (1)

�h� s
2�1/2 � 1.04M�

0.53 for THF (2)

where M� is the viscosity-average molecular weight.
Another method uses the following equation:9

��� � ����
�h� s

2�1/2

M�

(3)

where [�] is the intrinsic viscosity of a solution and
�(�) is a parameter dependent on the swelling coeffi-
cient (�) of a coil. At �3 �5, �(�) is equal to approxi-
mately 2 	 1023.9

In addition to equations, an estimated value of �h�s
2�1/2

can be obtained within the framework of fractional der-
ivation as follows.11 Let x 
 x(t) be the law of change of
some physical property at time t. The rate of change x(t)
has the following form:

dx
dt � ��t��0 (4)

where t is dimensionless time and �0 is the character-
istic time of the given process.

Equation (4) can be represented as follows:

D0t

� D0t

1�� x�t� � ��t� �0 (5)

where

D0t

� f�t� �
1

��1 � ��

d
dt �

0

t f��� d�

�t � ��� (6)

is a Rimman–Liouville fractional derivative of approx-
imately � (0  �  1).
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If we enter the notation D0t

1��x(t) 
 hs(t), eq. (5)
becomes

D0t

� hs�t� � ��t��0 (7)

The solution of eq. (7) looks like

hs�t� �
�0

���� �
0

t ���� d�

�t � ��� (8)

The integral in the right part of eq. (8) is easily calcu-
lated at �(t) 
 �, where � is constant, and returning to
dimensional t, we obtain the following:

hs�t� �
��0

�

�1 � ������
(9)

where �(�) is Euler’s � function.
Comparing eq. (9) at � 
 1/2 with the known Ein-

stein formula for the mean-square displacement of a
particle making Brownian motion, researchers have
drawn the conclusion that the value of hs(t) can be
considered hs 
 �x2�1/2.11

A polymeric macromolecule can be divided into
statistical segments of length lst, and one can simulate
it (in an elementary case) as Brownian motion of a
segment.9 Then, eq. (9) can be used for the description
of a polymeric chain. In this case, rate � can be treated
as the rate of segment jumping, and �0 can be consid-
ered the time of one jump. If lst is equal to ��0 and t is
equal to �0Nst (where Nst is the number of statistical
segments in a chain), we obtain the following:11

�h� s
2�1/2 �

lstNst
1��

�1 � ������
(10)

We have chosen PC because it is a very well studied
polymer for which Mark–Kuhn–Houwink equations
have been obtained for various solvents. PC has the
following chemical structure:

The purpose of this article is the calculation of �h�s
2�1/2

according to eqs. (1)–(3) and (10) and the subsequent
comparison of the results for samples of PC solutions
in two solvents (MCh and THF). For this purpose, five
molecular weights (MWs) for PC have been arbitrarily
chosen: 2.5, 5.0, 7.5, 10.0, and 12.5 	 104. With eqs. (1)
and (2), the empirical values of �h�s

2�1/2 are calculated
for the indicated MWs. When eq. (3) is used for the

determination of the [�] values (dL/g) corresponding
to the indicated MWs, the following Mark–Kuhn–
Houwink equations are used:10

��� � 1.11 � 10�4 MW0.82 for MCh (11)

��� � 3.99 � 10�4 MW0.70 for THF (12)

This allows us to calculate �h�s
2�1/2 according to eq. (3).

When eq. (10) is used, the parameters lst, Nst, �, and
�(�) should be defined. lst can be determined as fol-
lows:12

lst � C�l0 (13)

where C� is the characteristic ratio of chain statistical
flexibility9 and l0 is the length of the skeletal bond of
the main chain equal to 1.25 Å for PC.13

In this article, two variants of C� are used. The first
(static) is based on the application of a literature value
of C� for PC (2.4).12,13 The second (dynamic) variant
supposes that the value of C� depends on the structure
of the macromolecular coil in solution, that is, Df, and
in this case, C� can be determined as follows:14

Df � 2 � 4� 2
C�

2 S�
1/2

(14)

where S is the cross-section area of a macromolecule
(30.7 Å2)15 for PC.

In turn, Df can be calculated with the following
equation:16

Df �
3

1 � a (15)

where a is the index in the Mark–Kuhn–Houwink
equation [0.82 for MCh and 0.70 for THF; see eqs. (11)
and (12), respectively].

The volume of a macromolecule (Vm) can be deter-
mined with known MW values as follows:17

Vm �
MW
	NA

(16)

where 	 is the density of a polymer (1.20	103 kg/m3

for PC17) and NA is Avogadro’s number.
Furthermore, it is possible to calculate the length of

a macromolecule (Lm) as Vm/S and Nst as Lm/lst.
As shown in ref. 2, the fractional exponent � corre-

lates with the fractal dimension of Cantor’s set and
indicates a fraction of the system, the status being kept
for the entire evolution time t. Cantor’s set is consid-
ered in one-dimensional Euclidean space (d 
 1), and
so its fractal dimension is df  1 by virtue of the fractal
definition. For fractal objects in Euclidean spaces with
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higher dimensions (d � 1) like �, one should accept df

or7,8

� � df � �d � 1� (17)

where d is the dimension of the Euclidean space in
which the fractal is considered.

We consider the physical sense and definition of the
value of a fractional exponent � in the given context.
The transition to the condensed polymeric state occurs
at Df 
 2.5.1 This means that the limiting value of � is
reached at this value of Df, equivalent to d, and then
we obtain the following:7

� � Df � �2.5 � 1� (18)

or

� � Df � 1.5 (19)

At last, �(�) can be calculated as follows:18

���� � �


2�
1/2

���e�� (20)

RESULTS AND DISCUSSION

Figure 1 presents a comparison of the relationships of
the �h�s

2�1/2 (MW) values, calculated by the three indi-
cated methods, for solutions of PC in MCh. A good

correspondence (within a limit of 8%) for the values of
�h�s

2�1/2 calculated with eqs. (11) and (12) with the use
of a dynamic variant of an estimation of C� [eq. (14)]
has been obtained. The application of the statistical
variant C�, when it is constant, increases the error of
the calculated values up to approximately 12%. As for
the empirical equation, eq. (1), it produces values of
�h�s

2�1/2 much lower than the estimations of eqs. (11)
and (12).

A similar picture is obtained for solutions of PC in
THF (Fig. 2), although the disagreement of the calcu-
lated results of eqs. (11) and (12) and eq. (14) is a little
bit greater, approximately 17%. The error in the esti-
mation of Df may be the reason. Therefore, reducing Df

from 1.765 to 1.70 (i.e., 3%) results in the best corre-
spondence of the indicated calculations (Fig. 2): the
average disagreement is reduced to 11.5%. It is neces-
sary to mark the other important feature of the rela-
tionships of �h�s

2�1/2 and MW, calculated with eq. (10):
they grow faster then similar dependences calculated
with eq. (11) at large MWs. At large MWs, the macro-
molecular coil becomes more compact, and this results
in a decrease in exponent a in the Mark–Kuhn–Hou-
wink equation and, according to eq. (15), to an in-
crease in Df.

9 The estimations have shown that for
solutions of PC in MCh, when Df increases from 1.648
to 1.681, that is, 2% (or a decreases from 0.820 to 0.785),
�h�s

2�1/2 decreases from 107.4 to 99.6 nm; that is, the
indicated difference is eliminated.

Figure 1 Dependence of �h�s
2�1/2 on MW for a solution of PC

in MCh: (1) eq. (1) with a constant value of C�, (2) eq. (3)
with a constant value of C�, (3) eq. (10) with a constant value
of C�, and (4) eq. (14) with an estimated value of C�.

Figure 2 Dependence of �h�s
2�1/2 on MW for a solution of PC

in THF: (1) eq. (2) with a constant value of C�, (2) eq. (3) with
a constant value of C�, (3) eq. (10) with a constant value of
C�, (4) eq. (14) with an estimated value of C�, and (5) Df 

1.70 (5).
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We now return to the correctness of using �(�) 
 2
	 1023 in eq. (3). The value of � is connected to Df by
the following equation:19

Df �
5�2 � 3
3�2 � 2 (21)

For values of Df obtained with eq. (15) for solutions of
PC in MCh and THF (Df 
 1.648 or 1.764, respec-
tively), �3 is 2.5–25, and this enables the use of the
indicated coefficient �(�).

CONCLUSIONS

The results of this article allow us to make two main
conclusions. First, fractional derivation can be used to
calculate �h�s

2�1/2 of a polymeric chain as precisely as
other existing computational techniques. Second,
knowledge of changes in the molecular characteristics
of a polymeric chain is needed for the correct calcula-
tion of the indicated parameters. In other words, one
should take into consideration the dynamics when the
structure of a macromolecular coil is varied.
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